Multivariate Classifi cation for Qualitative Analysis

نویسندگان

  • Davide Ballabio
  • Roberto Todeschini
چکیده

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Principles of classifi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 The classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Main categories of classifi cation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Validation and variable selection procedures . . . . . . . . . . . . . . . . . . . . . . . . . 87 Evaluation of classifi cation performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Classifi cation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Nearest mean classifi er and K-nearest neighbors . . . . . . . . . . . . . . . . . . . . . . 94 Discriminant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Partial least squares-discriminant analysis (PLS-DA) . . . . . . . . . . . . . . . . . . . 97 Soft independent modeling of class analogy (SIMCA) . . . . . . . . . . . . . . . . . . 97 Artifi cial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Classifi cation and regression trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 New classifi ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multivariate Methods in Robust Econometrics

This work studies implicitly weighted robust statistical methods suitable for econometric problems. We study robust estimation mainly for the context of heteroscedasticity or high dimension, which are up-to-date topics of current econometrics. We describe a modifi cation of linear regression resistant to heteroscedasticity and study its computational aspects. For a robust version of the instrum...

متن کامل

Electronic Nose and Tongue for Pet Food Classifi cation

Commercial canned dog and cat foods (four type of each) were classifi ed by electronic nose (EN) and tongue (ET) methods. Th e classifi cation was performed by canonical discriminant analysis (DA) followed by cross-validation, using the ET and EN sensory values separately (7 and 18 sensors) and also jointly. Th e number of entered variables corresponding to the total number of sensors (n=25) we...

متن کامل

Comprehensive Survey On Computer Aided SAR Image Segmentation and Classifi cation Methods

Synthetic Aperture Radar (SAR)is a satellite imaging technology which uses radio waves for capturing the images. Here a RADAR(Radio Detection And Ranging) is mounted on a moving platform which emits radio waves and the refl ected echoes from earth’s surface is collected back. Signal processing of these backscattered echoes results in SAR images. The major advantages of SAR imaging is that it is...

متن کامل

Proposing the novelty classifi er for face recognition

Introduction: Face recognition, one of the most explored themes in biometry, is used in a wide range of applications: access control, forensic detection, surveillance and monitoring systems, and robotic and human machine interactions. In this paper, a new classifi er is proposed for face recognition: the novelty classifi er. Methods: The performance of a novelty classifi er is compared with the...

متن کامل

Classification of long bone fractures in children

Classifi cation systems have been introduced for a variety of orthopedic conditions over the years, and for many of them—including fractures—several systems have been suggested. More comprehensive classifi cation systems are useful for pooling of data from publications over time, to compare data in different publications. Also, systematic reviews would benefi t greatly from a uniformity in term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008